News Highlight articles in journal

[Editor's Pick] Current Optics and Photonics Vol. 8 no. 4 (2024 August)

사무국 hit 375 date 2024-08-23

Utilizing Optical Phantoms for Biomedical-optics Technology:Recent Advances and Challenges

Ik Hwan Kwon1†, Hoon-Sup Kim1†, Do Yeon Kim1,2†, Hyun-Ji Lee1,3†, and Sang-Won Lee1,3,4 *

 

Current Optics and Photonics  Vol. 8 No. 4 (2024 August), pp. 327-344
DOI: https://doi.org/10.3807/COPP.2024.8.4.327 

 

 

  Fig. 1  Phantoms of optical coherence tomography (OCT) for image calibration and functional quality test. (a) The OCT image and graphs of a single-layer phantom. The nano phantom consists of ultra violet (UV)-curing epoxy and nano-shells to compare the performance of the four OCT systems. Reprinted with permission from A. Fouad et al. Biomed. Opt. Express [1]. Copyright © 2014, Optica Publishing Group. (b) Schematic and OCT images of multi-layer phantoms. Reprinted with permission from A.Agrawal et al. Biomed. Opt. Express [3]. Copyright © 2013, Optica Publishing Group. (c) Wave propagation pattern of phantom from optical coherence elastography. Reprinted from S. Song et al. J. Biomed. Opt. 2013; 18; 21509. Copyright © 2013, SPIE [60]. (d) Spectroscopic OCT image and map of spectroscopic metrics of the phantom. See the main text for details. Reprinted with permission from V. Jaedicke et al. Biomed. Opt. Express [37]. Copyright © 2013, Optica Publishing Group.

 

Keywords: Calibration, Evaluation, Optical phantom, Tissue-mimic
OCIS codes: (120.4800) Optical standards and testing; (170.0110) Imaging systems; (170.0170) Medical optics and biotechnology; (170.3890) Medical optics instrumentation;(220.0220) Optical design and fabrication


Abstract
Optical phantoms are essential in optical imaging and measurement instruments for performance evaluation, calibration, and quality control. They enable precise measurement of image resolution, accuracy, sensitivity, and contrast, which are crucial for both research and clinical diagnostics. This paper reviews the recent advancements and challenges in phantoms for optical coherence tomography, photoacoustic imaging, digital holographic microscopy, optical diffraction tomography, and oximetry tools. We explore the fundamental principles of each technology, the key factors in phantom development, and the evaluation criteria. Additionally, we discuss the application of phantoms used for enhancing opticalimage quality. This investigation includes the development of realistic biological and clinical tissuemimicking phantoms, emphasizing their role in improving the accuracy and reliability of optical imaging and measurement instruments in biomedical and clinical research.